AUTISM

AND THE ENVIRONMENT

New ideas for advancing the science

September 8, 2010 NIEHS Keystone Campus

In partnership with

Meeting Structure

- Four subtopics
 - What have we learned from other disorders?
 - Novel tools and approaches in genomics and toxicology
 - Cellular and molecular mechanisms
 - Exposure science and epidemiology
- Expectations
 - All encouraged to participate in discussion
 - Recognize value of diverse backgrounds and viewpoints
 - Cross cutting themes likely to emerge

Charge to group

- Be bold and forward thinking
 - Don't be constrained by cost
 - Think about next 5-10 years
- Consider mix of approaches (big and small; short and long term)
- Consider multidisciplinary/interdisciplinary needs and opportunities

Assumptions

- Autism is complex, involves many genes, many different exposures
- Relevant genetic susceptibilities and exposures are likely to vary among individuals
- Environment is defined broadly
 - Industrial, agricultural chemicals
 - Endocrine active compounds
 - Pharmaceuticals, medical exposures
 - Lifestyle, nutrition, social environment

Overarching questions

- What are the primary obstacles to progress?
- What are the best opportunities/questions/areas of science to pursue?
- What are the best mechanisms to achieve progress?

Topic 1: Lessons learned from other disorders

- How has information about known risks from single genes or pathways provided clues for environmental etiologies?
- What are the most successful examples of interdisciplinary integration of basic and clinical research?
- What is needed to shift current paradigm of waiting for epidemiology to provide clues to pursue in mechanistic studies?

Topic 1: Lessons learned from other disorders Points to consider

- There is value in considering relation of environmental risks to both broad and narrow disease phenotypes.
 - Focus on neural pathways controlling discrete domains of functioning, need to better describe and define clinical subtypes
 - Examine genes that control many areas of functioning and think broadly in terms of phenotypes.
- Information about disease mechanisms is critical for generating hypotheses
 - Good precedence for environmental and genetic risks converging on same pathways (e.g., alpha synuclein and pesticides in Parkinson's)
 - Think beyond metabolic enzymes as targets for environmental exposures
- Sustained back and forth exchange between basic and clinical science helpful, but difficult to achieve in traditional R01

Topic 1: Lessons learned from other disorders Points to consider

- A range of epidemiologic approaches is needed to offset weaknesses of any one approach
 - Need to collect better, more timely exposure information
 - Environmental exposure data may explain differences in genetic findings
- As international surveillance infrastructure improves, there will be opportunities for using contrasts based on geography, lifestyle, nutrition
- Large populations are needed
 - May require combining studies, harmonization of methods
- Greater attention to environmental etiologies of disease can arise from
 - Clinical cases arising from unusual and/or high level exposures
 - Clear examples of gene x environment interplay
 - Changes in prevalence and increased public interest

Topic 2: New tools and approaches in genomics and toxicology

- How can new tools and approaches be used to advance research in environmental contributors to autism?
 - Bioinformatics and computational approaches
 - Novel sequencing methods, epigenetic approaches
 - Induced pluripotent stem cells (iPSCs)
 - High throughput screening approaches

Topic 2: New tools and approaches in genomics and toxicology Points to consider

- How to approach genetic complexity of autism
 - Contribution of rare copy number variants (CNVs) vs. common variants
 - Rare variants are often highly penetrant, common variants may confer lesser risk
 - Lack of specificity between gene variation and clinical condition.
 - Variation in SHANK3 may increase risk of multiple disorders, specificity depends on other genes, exposures
 - Most genetic studies are conducted with stringent cases, not representative of general population of autism
- How to correlate mechanism at gene expression level to genotype
- How to translate human phenotype to cellular phenotype

Topic 2: New tools and approaches in genomics and toxicology Points to consider

- Recent genetic findings provide many clues to pursue
 - Good agreement on a number of genes related to autism
 - Ongoing studies (e.g., exome sequencing) will generate more clues in near future
- A range of models should be considered
 - Use of convergent pathways for screening
 - Many knock out models available, although these have limitations
 - Differentiated cellular systems could be used to address synapse formation, connectivity
 - iPSCs could be used to advantage (e.g., fibroblasts from patients with defined phenotypes)
- Bioinformatics approaches can be used to define potential relationship between genes and exposures
 - National Toxicology Program example with exposures linked to diabetes and obesity

Topic 3: Cellular and molecular mechanisms toxicology

- How can advances in autism science inform mechanistic investigations?
 - Genetic findings
 - Immune findings
- What models are available and most relevant?
- How can we more effectively develop, disseminate and use model systems?

Topic 3: Cellular and molecular mechanisms toxicology Points to consider

- Cellular models of the nervous system often lack key components

 the neuro-immune interactions. Future models should incorporate one or more aspects of neuro-immune interactions.
 - Simpler models (e.g. dissociated neurons) are not necessarily better
 - Organotypic cultures may address some, but not all, of these issues.
 - Permit studies that focus on how dendritic growth, synapse formation and pruning are influenced by xenobiotics.
 - Incorporate cytokine profiles found in ASD to in vitro models
 - Need links to in vitro toxicity data (e.g., Tox-21).
 - Need to understand anatomical correlates of functional impairments.
 - Use a tiered approach: molecular -> cellular -> organotypic -> in vivo.

Morrisville, NC September 8, 2010

Topic 3: Cellular and molecular mechanisms toxicology Points to consider

- Develop iPSC or mSC lines from individual patients with syndromic and idiopathic autism that have deep phenotyping.
 - These approaches may preserve the genetic complexity that confer autism risk and provide novel opportunities to study neurodevelopmental impairments relevant to ASD.
- Develop targeted mice that express several disrupted genes relevant to autism.
 - Develop mice with CNVs within high risks regions.
 - Take advantage of mild phenotypes to study additive (synergistic) influence of xenobiotics.
- Study toxicants such as BPAs, PBDEs that disrupt hormonal systems and their relationship to behavioral outcomes in social behavior and anxiety.
- Study whether exposures influence parental imprinting and their consequence on epigenetic changes in the subsequent generations.

Topic 4: Exposures science and epidemiology

- How can we harness improvements in exposure metrics?
- What study designs and analytic approaches are best suited for g x e?
- Are there unique international opportunities?

Topic 4: Exposures science and epidemiology Points to consider

- Time-varying exposure problem
 - Environment is time dependent, genetics is not
 - What does this imply for type of samples? Study design?
 - Developmental approaches are critical, prospective approach is ideal
 - What is pragmatic?
- How to strategically collect samples and data in such a way that does not constrain our ability to look at a variety of exposures?
 - Do time series
 - Discovery mode rather than measuring specific identified exposures
 - Learn from proteomics, metabolomics analyze spectrum of peaks

Topic 4: Exposures science and epidemiology Points to consider

- New data collection strategies
 - Passive monitoring technologies participant wears badge, dermal patch
 - Collect diapers and store them
 - New technologies like cell phones to capture real-time exposure info
 - New technologies being developed under NIH Genes Environment and Health Initiative
 - Develop website/portal about new technologies to provide information to researchers (e.g., PHEN-X Project – NIH funded project that puts information about technology on the internet)
- Need better methods to capture and analyze dietary exposures, mixtures, cumulative effects

Topic 4: Exposures science and epidemiology Points to consider

- Emerging areas
 - Genes involved in metabolism of xenobiotics
 - Maternal genetic profile and environmental exposures
 - Early childhood exposure of mom second and third generational effects, latent effects of early exposures to mother, grandmother
 - Statistical tools to help with incorporating environmental exposures into autism studies
 - Get statisticians involved early on in study design
- Novel study populations
 - China large ongoing studies looking at women of reproductive age
 - Famine, heavy toxicant exposures, drought
 - NCI studies of women with good exposure measurements, add on autism piece
 - NCS produced document to recommend how to add autism piece
 - To capitalize on ongoing studies, international opportunities, need to overcome barrier of making a good ASD diagnosis – use endophenotype tools (e.g., SRS, selfadministered tools) to establish autism diagnosis more quickly and cost-efficiently

Topic 1: Summary of recommendations

Topic 1: Summary of recommendations

Topic 2: Summary of recommendations

Topic 2: Summary of recommendations

Topic 3: Summary of recommendations

Topic 3: Summary of recommendations

Topic 4: Summary of recommendations

Topic 4: Summary of recommendations

Next steps

- Create meeting report
- Post on NIEHS and Autism Speaks websites
- Report to Interagency Autism Coordinating Committee (IACC)
- Consider recommendations for development of future initiatives and activities

Opportunities for public comment to IACC

- The IACC's primary mission is to facilitate the efficient and effective exchange of information on autism activities among the member agencies, and to coordinate autism-related programs and initiatives.
- Develops and annually updates a strategic plan for the conduct of, and support for, autism spectrum disorder research
- Additional information about the IACC, including opportunities for public comment, can be found at http://iacc.hhs.gov/

Thank you

- Meeting participants and webcast viewers
- Planning committee
 - Gerri Dawson
 - Isaac Pessah
 - Lisa Croen
 - Alycia Halladay
 - Cindy Lawler
- Logistics and technical support
 - Astrid Haugen
 - Robbie Majors
 - Michael Rosanoff
 - Kerri Moran at MDB
 - Donna Corcoran
 - Brent McCuen
 - John Maruca

